New iteration process for approximating fixed points in Banach spaces
نویسندگان
چکیده مقاله:
The object of this paper is to present a new iteration process. We will show that our process is faster than the known recent iterative schemes. We discuss stability results of our iteration and prove some results in the context of uniformly convex Banach space for Suzuki generalized nonexpansive mappings. We also present a numerical example for proving the rate of convergence of our results. Our results improves many known results of the existing literature.
منابع مشابه
Approximating fixed points for nonexpansive mappings and generalized mixed equilibrium problems in Banach spaces
We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...
متن کاملNew three-step iteration process and fixed point approximation in Banach spaces
In this paper we propose a new iteration process, called the $K^{ast }$ iteration process, for approximation of fixed points. We show that our iteration process is faster than the existing well-known iteration processes using numerical examples. Stability of the $K^{ast}$ iteration process is also discussed. Finally we prove some weak and strong convergence theorems for Suzuki ge...
متن کاملApproximating fixed points of α-nonexpansive mappings in uniformly convex Banach spaces and CAT(0) spaces
An existence theorem for a fixed point of an α-nonexpansive mapping of a nonempty bounded, closed and convex subset of a uniformly convex Banach space is recently established by Aoyama and Kohsaka with a non-constructive argument. In this paper, we show that appropriate Ishihawa iterate algorithms ensure weak and strong convergence to a fixed point of such a mapping. Our theorems are also exten...
متن کاملApproximating fixed points of α-nonexpansive mappings in uniformly convex Banach spaces and CAT() spaces
An existence theorem for a fixed point of an α-nonexpansive mapping of a nonempty bounded, closed and convex subset of a uniformly convex Banach space has been recently established by Aoyama and Kohsaka with a non-constructive argument. In this paper, we show that appropriate Ishikawa iterate algorithms ensure weak and strong convergence to a fixed point of such a mapping. Our theorems are also...
متن کاملApproximating Fixed Points of 2-generalized Hybrid Mappings in Banach Spaces and Cat(0) Spaces
In this paper, we first prove weak and strong convergence theorems for Ishikawa and Halpern iterations of 2-generalized hybrid mappings in uniformly convex Banach spaces and we apply our method to provide an affirmative answer to an open problem raised by Hojo, Takahashi and Termwuttipong [Strong convergence theorems for 2-generalized hybrid mappings in Hilbert spaces, Nonlinear Analysis, 75 (2...
متن کاملOn fixed points of fundamentally nonexpansive mappings in Banach spaces
We first obtain some properties of a fundamentally nonexpansive self-mapping on a nonempty subset of a Banach space and next show that if the Banach space is having the Opial condition, then the fixed points set of such a mapping with the convex range is nonempty. In particular, we establish that if the Banach space is uniformly convex, and the range of such a mapping is bounded, closed and con...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 08 شماره 04
صفحات 237- 250
تاریخ انتشار 2019-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023